Structure Reports

Online
ISSN 1600-5368

Alexei Merkoulov, Klaus Harms* and Jörg Sundermeyer

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany

Correspondence e-mail:
harms@chemie.uni-marburg.de

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.002 \AA$
R factor $=0.027$
$w R$ factor $=0.062$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,1-Dimethylhydrazinium chloride

The reaction of 1,1-dimethylhydrazine with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ affords the anhydrous salt $\mathrm{Me}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{NH}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$. The crystal structure, determined by X-ray analysis, consists of two independent $\left[\mathrm{Me}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{NH}_{2}\right]^{+}$cations and two Cl^{-}anions, which are connected via hydrogen bonds.

Comment

The title salt, (I), crystallizes in the space group $P 2_{1} / n$ and the two independent ion pairs found in the asymmetric unit are presented in Fig. 1, with selected bond lengths and angles listed in Table 1. The bond lengths and angles in the $\left[\mathrm{Me}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{NH}_{2}\right]^{+}$cation are similar to those found in the crystal structures with azide (Klapötke et al., 1999) and nitrate (De Bonn et al., 2001) anions.

(I)

The chloride anions form three hydrogen bonds with NH protons (Fig. 1), two with terminal NH_{2} groups from two symmetry-related cations ($\mathrm{N} 4-\mathrm{H} 5 \cdots \mathrm{Cl} 1 / \mathrm{N} 4-\mathrm{H} 6 \cdots \mathrm{Cl} 1$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2 / \mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{Cl} 2)$ and one with the NH proton from the other independent cation ($\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$ and $\mathrm{N} 3-$ $\mathrm{H} 4 \cdots \mathrm{Cl} 2)$. Thus, each proton bonded to an N atom is involved in only one hydrogen bond with a Cl atom.

Furthermore, there are close contacts between the chloride anions and H atoms of methyl groups. Atom Cl 1 has one such contact, while Cl 2 exhibits four short contacts (see Table 2 and Fig. 1 for details).

The existence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds has been reviewed through a statistical analysis of data from the Cambridge Structural Database (Aakeröy et al., 1999). It has been shown that chloride anions are better hydrogen-bond acceptors than neutral chlorine-containing molecules and the importance of such interactions to crystal engineering seems to have been vastly underestimated in the past. The parameters of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts in (I) allow us to speculate that not only 'classical' $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ but also weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are present.

Experimental

$\mathrm{Me}_{2} \mathrm{NNH}_{2}(10 \mathrm{ml}, 131.5 \mathrm{mmol})$ was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. A 4.41 M solution of $\mathrm{HCl}(30 \mathrm{ml}, 132.3 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ was added slowly

Received 27 April 2005 Accepted 10 May 2005 Online 21 May 2005

Figure 1
View of (I), showing the hydrogen bonds as dashed lines (50\% probability displacement ellipsoids). Symmetry codes as in Table 2.
at 273 K . After warming to room temperature, the reaction was stirred for 1 h . The resulting white powder of (I) was filtered off and dried in vacuum (yield: $11.04 \mathrm{~g}, 87 \%$). Cooling of a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 243 K gave crystals suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 7.36\left(s, 3 \mathrm{H}, \mathrm{NH}\right.$ and $\left.\mathrm{NH}_{2}\right), 3.01(s, 6 \mathrm{H}$, $\left.\mathrm{Me}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 46.6\left(\mathrm{Me}_{2} \mathrm{~N}\right)$.

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{9} \mathrm{~N}_{2}{ }_{2} \cdot \mathrm{Cl}$.
$M_{r}=96.56$
Monoclinic, $P 2_{1} / n$
$a=9.7305(9) \AA$
$b=10.5319(10) \AA$
$c=10.4759(10) \AA$
$\beta=90.475(11)^{\circ}$
$V=1073.54(18) \AA^{\circ}$
$Z=8$
$D_{x}=1.195 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8000
\quad reflections
$\theta=2.8-26^{\circ}$
$\mu=0.56 \mathrm{~mm}^{-1}$
$T=193(2) \mathrm{K}$
Needle, light orange
$0.30 \times 0.12 \times 0.12 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer

ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.853, T_{\text {max }}=0.949$
10258 measured reflections
2077 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.062$
$S=0.95$
2077 reflections
163 parameters

1623 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=26^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0392 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

C1-N1	$1.476(2)$	$\mathrm{C} 4-\mathrm{N} 3$	$1.476(2)$
C2-N1	$1.477(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.4546(17)$
C3-N3	$1.482(2)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.4428(18)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	$109.16(13)$	$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 4$	$114.37(14)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2$	$108.89(12)$	$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 3$	$108.78(13)$
C1-N1-C2	$112.43(15)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 3$	$112.31(13)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{H} 1$	$110.4(12)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	0.83 (2)	2.27 (2)	3.0975 (15)	169.3 (16)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.91 (2)	2.47 (2)	3.3513 (16)	163.4 (16)
$\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{Cl} 2^{\text {ii }}$	0.91 (2)	2.53 (2)	3.4342 (16)	171.6 (15)
$\mathrm{N} 3-\mathrm{H} 4 \cdots \mathrm{Cl} 2$	0.890 (19)	2.149 (19)	3.0369 (14)	175.9 (16)
$\mathrm{N} 4-\mathrm{H} 5 \cdots \mathrm{Cl} 1$	0.89 (2)	2.46 (2)	3.3382 (15)	172.5 (17)
$\mathrm{N} 4-\mathrm{H} 6 \cdots \mathrm{Cl} 1^{\text {iii }}$	0.87 (2)	2.52 (2)	3.3940 (16)	175.8 (18)
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 2$	0.94 (2)	2.89 (2)	3.768 (2)	156.8 (16)
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.96 (2)	2.90 (2)	3.701 (2)	141.1 (14)
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 2$	0.941 (19)	2.900 (18)	3.7817 (19)	156.4 (15)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{Cl} 1^{\text {iv }}$	0.95 (2)	2.82 (2)	3.732 (2)	160.2 (16)
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2^{\text {ii }}$	0.97 (2)	2.88 (2)	3.721 (2)	146.4 (15)
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{Cl} 2^{\text {v }}$	0.93 (2)	2.87 (2)	3.5585 (19)	132.0 (17)

Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $2-x,-y, 1-z$; (iv) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (v) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$.

All H atoms were located and refined isotropically; $\mathrm{C}-\mathrm{H}$ distances are in the range 0.94 (2)-0.97 (2) \AA and $\mathrm{N}-\mathrm{H}$ distances are in the range 0.83 (2)-0.91 (2) \AA.

Data collection: EXPOSE in IPDS Software (Stoe \& Cie, 1999); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Aakeröy, C. B., Evans, T. A., Seddon, K. R. \& Palinko, I. (1999). New J. Chem. pp. 145-152.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
De Bonn, O., Hammerl, A., Klapötke, T. M., Mayer, P., Piotrowski, H. \& Zewen, H. (2001). Z. Anorg. Allg. Chem. 627, 2011-5.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Klapötke, T. M., Nöth, H., Schwenk-Kirchera, H., Walther, W.-H. \& Holl, G. (1999). Polyhedron, 18, 717-9.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1999). IPDS Software. Version 1.29. Stoe \& Cie, Darmstadt, Germany.

